Mg

NASA CONTRACTOR
REPORT

LOAN COPY: RETURN 10
AFWL (WLOL)
KIRTLAND AFB, N MEX

NASA CR-1626

A NEW APPROACH TO
AERIAL COMBAT GAMES

by Sheldon Baron, Kai-Ching Chu, Yu-Chi Ho,
and David L. Kleinman

Prepared by _
BOLT BERANEK AND NEWMAN INC.

Cambridge, Mass. 02138
for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. « OCTOBER 1970



TECH LIBRARY KAFB, NM

GRS

D06L073Y,
//

'NASA CR-1626

A NEW APPROACH TO AERIAL COMBAT GAMES

e K *
By-Sheldon-Baron; Kai-Ching Chu, Yu-Chi Ho,
and David L. Kleinman

*Harvard University

;

'
f) ‘,I.j “/
LN Y

Issued by Originator as Report-No. 1916

Prepared under Contract No. NAS 1-8296 by
}” BOLT BERANEK AND NEWMAN INC.
Cambridge, Mass. 02138
for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 — CFSTI price $3.00






ABSTRACT

The salient results of a study to apply differential game
theory to aerial combat problems are presented in this report.
A new approach to manned aerlal combat games has been developed
that 1ncludes the statistical effects of human observation. This

method has been applled to two classical differential game problems.

In addition, an approach to the "dogfight" problem has been
developed.
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FOREWORD

This report was prepared by the Control Systems Department of
Bolt Beranek and Newman Inc., Cambridge, Massachusetts. It repre-
sents the results of a study made for the Langley Research Center
under NASA Contract NAS1-8296 that resulted from an unsolicited
proposal. The work was administered under the direction of Dr.
John D. Bird of the Theoretical Mechanics Branch, ASMD at Langley.
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1. INTRODUCTION

Until recently, aerial combat problems had been of decreasing
interest to the research community. The evolving nature of war-
fare, lincreases in aircraft speeds, and advances in weapons sys-
tems all seemed to mitigate against manned aerial "duels". Hence,
alrcraft performance characteristics were most often being deter-
mined by other misslion requirements and the pilot's role in any
aerial combat appeared to be of lessening importance. Indeed,
the "dogfight", where slight advantages in aircraft performance
and pllot skill would determine the outcome 1in an aerlal battle,
seemed to be a thing of the past.

Recent developments in Southeast Asia have shown that this
evaluation of alr-to-air combat was a bit premature — the days of
the "Red Baron" are far from over (Ref.l). Moreover, questions
are being raised anew as to requisite alrcraft performance charac-
teristics and handling qualities, appropriate pilot tactics, pro-
cedures for pilot training, etc. As a result, research into
aerial combat problems has been stimulated greatly.

In its simplest form, aerial combat may be consldered a
problem of pursuit and evasion. One aircraft, the pursuer, 1is
attempting to "capture" an opposing aircraft, the evader, who
wlshes to avoid such an outcome.+ (We use the word capture to
designate an outcome that i1s advantageous to the pursuer. For
example, capture may mean simply that the evader 1s withiln target
of the pursuer's guns.) In a more complex version of the problem,
the roles of pursuer and evader may be Interchanged several times
during the course of a battle; such a sltuation may be called,

+For ease of discussion, we shall frequently refer to the alrcraft

as though they were opposing individuals.



appropriately, a "dogfight". 1In either case, aerial combat, as

the name implies, 1s a situation in which the participants have
conflicting objectives. The mathematical theory which is con-
cerned with determining optimal courses of action for opponents
with conflicting objectives 1s the Theory of Games (Ref.2). That
portion of the theory which deals with situations of a dynamic
nature, involving lengthy sequences of logically connected deci-
sions, is called Differential Game Theory (Ref.3). It is this
aspect of game theory that is most pertinent to the study of aerial
combat.

This report describes the results of a research program+ to in-
vestigate the application of differential game theory to aerial com-
bat problems. Simplified combat problems were to be analyzed in an
attempt to determine fundamental relations between the outcome of a
combat and such factors as aireraft performance characteristics, pi-
lot tactics and information avallable. In addition, the value of
differential game theory for studying complex aerial combat problems
was to be assessed. Before we discuss what we have accomplished in
connection with these objectives, let us describe some of the
salient aspects of the problem.

What 1s a Differential Game? This simple question is not
answered simply. For present purposes, however, it 1s useful to
describe briefly the most basic type of problem, the so-called
zero-sum, deterministic differential game. A crude definition of

such a game may be given as f‘ollows:-H

+The program was conducted by BBN for the Langley Research Center

under Contract No. NAS 1-8296,

~H-A more precise formulation of the problem can be found in Ref.4.



Determine the pair (u*,v¥) that provides a saddlepoint of

T
T(tg,% 5u,v) = g(x(T),T) +f L(x,u,v,t)dt (1.1)

s

subJect to the constraints

x = f(x,u,v,t) ; x(ty) = x (1.2)

uel , VeV (1.3)
and

h(x(T),T) = 0 (1.4)

where, in the parlance of game theory, J 1s the payoff, x 1ls the
(vector) position or '"state" of the game, u and v are called
strategies, and are restricted to certain sets of admissable
strategles, U and V, which depend, in general, on the specifiec
problem to be solved, and a saddlepoint is the palr of optimal
strategies u*¥ and v¥* which satisfy

J(to,xo;u*,v) < J(to,xo;u*,v*) g_J(to,xo;u,v*) (1.5)

Equations (1.2) through (1.4) can be thought of as defining
the rules of the game. The progress of play 1s governed by the
n first-order differential equations (1.2) — hence, the name
Differential Game. Play starts at time to in the state X and
terminates at the first time t=T such that (1.4) is satisfied,
i.e., Eq. (1.4) provides a stopping rule.



The payoff J 1s a numerical measure for determining the out-
come of the game and for evaluating the merits of particular
strategies. Conflict 1s Introduced, mathematically, by having
one player choose his strategy to maximize the payoff, while the
other player attempts to minimize the same payoff through his
selection of a strategy. The game 1s zero-sum because there is a
single payoff and one player's gain is the other player's loss.

The optimal strategies u¥ and v¥ are complete prescriptions
for play of the game in terms of the information available. This
type of differential game is assumed to be one of perfect infor-
mation: both players know how the game proceeds (Egs. (1.1)
through (1.4)) and the state x(t) at time t. As a result,
strategies are normally defined by expressions of the form

c
I

k(x(t),t)eU
(1.6)

k(x(t),t)eV

<
"

In other words, strategies are feedback, or closed-loop, control
laws. When the players do not have perfect information, one can-
not obtain solutions in terms of strategies of the form of

Eq. (1.6), and alternate procedures are dictated. We shall say
more about thls later.

It is important to note that there is no assurance that the
game, as formulated above, will ever terminate. Indeed, in some
instances, the very essence of the problem can be termination of
the game. For example, if Eq. (1l.4) represents the condition for
capture, one may simply be interested in whether capture is poss-
ible, i.e., whether the game terminates. Isaacs (Ref.3) calls



such a problem a "game of kind". (In Chapter 5 we will see that
the concept of a "game of-kind" 1is useful in studying the "dog-
fight" problem.)

To study aerial combat 1n the context of the above game, one
must specify the payoff (1.1), the equations of state (1.2), the
control constraints (1.3), and the termination criteria (or con-
straints)(1.4). Ordinarily, the equations of state will be some
set of equations describing the motlion of the vehicles. Embodied
in these equatlions and in the control constraints will be the
performance capabilities of the two alrcraft. The payoff and the
terminatlion criteria will generally reflect the goals of the com-
batants, but they might also include factors that are indlcative
of system constraints (e.g., weapons systems limitations). The
assumptions that are made wlth respect to these various aspects
of the problem will depend on the kind of results belng sought.
It is natural to expect, however, that the more realistic the
assumptions, the harder it will be to solve the problem analytic-
ally. This 1s indeed true and anything short of linearizing the
equations of state and making special assumptions about the payoff
and the constraints leads to problems that are intractable analy-
tically. Of course, 1f one attempts to further complicate the
problem, say by including stochastic effects, the difficulties
are compounded.

There are two obvious approaches that might be employed in
attempting to overcome these difficulties. First, one can at-
tempt to formulate meaningful simplified problems that can be
solved by analytic, geometric or specialized computational pro-
cedures. The solutions to such problems could be most useful
for obtalining general insights into the nature of aerial combat,
provided that one appreclates the effects that the requisite
simplifying assumptions have on the results. Second, one




can attempt to develop general computational methods for air-
combat "games" so that both simplified and realistic problems
can be solved directly.

To some extent, we have pursued both approaches in this pro-
gram. We began by analyzing simplified problems with the aims of
exploring the difficulties associated with these problems and of
developing the techniques and insights necessary to solve more
realistic problems. These investigations included a preliminary
study of the dogfight problem that revealed some of the essentlal
characteristics of this exceedingly difficult problem. We also
studied the Homocidal Chauffeur problem in some depth, examining
the effects of: (i) changing the capture region to a fan-shaped
"firing envelope"; (ii) using a penalty function in place of ter-
minal constraints; (iii1) constraining the evader's control; and,
(1v) degrading the information available to the players (i.e.,
imperfect information). These latter investigations, though in-
teresting and informative, turned out to be anclllary to the re-
search effort and, therefore, they will nect be discussed in this
report. As a result of our analyses, we have obtained a better
understanding of the nature of differential game solutions, and
of various aspects of the air-combat problem, although we cannot
assert that we have found the fundamental relations that we origi-
nally sought.

The analytical investlgations demonstrated the need for a
general computatlonal approach to air-combat games. They showed
that it is even difficult to solve problems that appear to be
comparatively simple. Consequently, the major portion of our
work was devoted to the search for a sultable computation scheme.
Our studies have led us to a new conceptualization of the air-
combat problem and a concomitant computatlional technique. The



approach will be described 1n detail later in this report. In
essence, it involves taking account of pilot limitations directly
and in such a way that the aerial-combat problem can be reduced

to a Markov game. Although the method has not been fully tested,
it appears that 1t has many advantages and that it has great
potential for solving reallstic aerial-combat problems. We belleve
that the discovery and preliminary development of this approach

is the most significant result of the research performed in this
program.

In the remainder of this report we shall discuss 1n detail
the results of our investigations. This chapter and the next one
are devoted primarily to background material and to an effort to
place our work in proper perspective with other research on dif-
ferential game theory and its application to air-combat problems.
In Chapter 3, the above-mentloned computational approach to air-
combat "games" 1is described in detaill. Results obtained in apply-
ing the technigue to two example problems are given in the next
chapter. Our analysls of the dogfight problem receives separate
attention in Chapter 5. Finally, in Chapter 6, wé present some
concluding remarks and suggestions for further research.







2. THE ROLE OF DIFFERENTIAL GAMES IN AERIAL COMBAT STUDIES

The theory of differential games has sometlmes been heralded
as the "answer" to the aerial combat problem (just as optimal con-
trol theory was the solution to the trajectory optimization prob-
lem). On the other hand, opinions have also been expressed that
the theory will never be made practical enough to have a signifi-
cant impact on such problems (Ref.5). In the long run, one may
expect the truth to lie somewhere between these extreme points of
view. But, what is the current role of differential game theory
in aerial combat problems and what can be expected in the near

future?

In an attempt to shed some light on these questlons and to
place in perspective the work to be described in later chapters,
we will now examine the actual state-of-the-art with respect to
differential games. However, we wlll not attempt to present an
exhaustive review of the literature. Instead, we try to discuss
issues that, once clarified, make 1t easier to assess the diffi-
culties and potentialities of differential game theory. We also
examine the application of differential game theory to aerial
combat problems from the standpoint of what has been done, what
people are dolng, and what prospects are for the future.

State of the Theory

The historical origin of differential games (Ref.3) and its
concurrent development with optimal control theory are well-known
(Ref.6). When the connection between the two was realized be-
latedly, and popularized in the early- and mid-sixties, a flurry
of activity followed and attempts were made to unify the two dis-
ciplines. Inasmuch as most of the active workers came from the




optimal control field, a natural tendency was to view differential
games as an extension of optimal control theory. While some suc-
cess is achieved with this viewpoint (Ref.7), it gradually became
evident that such an approach 1s not entirely satisfactory. Dif-
ferential game theory is so full of pitfalls, analytical and con-
ceptual, that experts as well as the unsuspecting fall viectim to
them.

Given the difficulties associated with differential game prob-
lems, and the popular notion that differential game theory was
merely an extension of optimal control theory, it is not surpris-
ing that much of the differential games literature 1s devoted to
two-player, zero-sum, deterministic problems. While these problems
are of undeniable importance, preoccupation with them leads to an
unnecessarily narrow point of view. The role of differential games
in air combat problems is more readily assessed if we flrst expand
our outlook. This can be done by considering differential games
(and, hence, optimal control problems) as a speclal case of a
larger class of dynamic optimization problems. The framework for
this larger class of problems may be called Generalized Control

Theory.

Differential Games and Generalized Control Theory--Our prime
concern here is with three aspecte of dynamic optimization prob-
lems: the performance measures, the number of controllers, and
the iInformation available to these controllers. In traditional
optimal control problems, there is a single performance measure

and a single controller who 1s supposed to coordinate all control
actions. This controller has access to all the available infor-
mation, although the specific form and fype of information may
vary from problem to problem. In the zero-sum, deterministic
game defined in Chapter 1, there are two controllers both of whom

10



have access to the same "perfect" information set. Each con-
troller has his own performance measure, but, since one is the
negative of the other (the zero-sum property), a single criterion
may be used in the formulatlon of the game. Thus, with respect
to the three aspects of an optimization problem being considered
here, thls type of game differs only slightly from the optimal
control problem. (However, in terms of solving problems, the
implications of this slight difference are substantial.)

Many important problems can be formulated either as optimal
control problems or as two-player, zero-sum, deterministic dif-
ferentlal games. On the other hand, it 1s easy to visualize re-
alistic situations or problems that cannot be treated adequately
within either of these frameworks. Indeed, it 1s not difficult
to think of problems in which there is a multiplicity of control-
lers (operating with or without cooperation from others), each
having a different information set and a different payoff (per-
formance measure). We call such a multi-controller, multi-
Information-set, multi-payoff situatlion a generalized control

problem.

The notion of generalized control problems 1s relatively new.
As a start toward the development of a theory for such problems,
it 1s useful to classify speciflec problems withlin the generalized
framework. One way of doing this is to divide into subcategories
each of the aspects of an optimization problem that we have been
discussing. For the criterion J, we have: (1) one J, (ii) two J's
with J1=—J2, and (iii) multiple J's with IJ #0+ For the controller
C, we have: (1) one C, (11) two C's, and %iii) multiple C's
Finally, for the information set I, we have the cases: (i) one
perfect information set, (il) one noisy (or imperfect) information
set, and (iii) multiple information sets.

¥Zero—sum games with more than two players may also be defined,
but they are of minor lnterest.

11



Using the above categories, one can organize various problem
areas in the manner shown in Table 1. From this table we can see
why the generallzed control theory viewpoint 1s important concep-
tually.+ For instance, it shows clearly that problems of conflict
are just a special class of the general optimization problem.
Furthermore, two-player, zero-sum, deterministic differential
games are, in turn, only a particular case of the problem of con-
flict. Thus, 1f the theory of such games is what one means by
differential game theory (as much of the literature would indicate),
it is indeed bold to claim that this theory willl ultimately pro-
vide the solution to all aerial combat problems. Alternatively,
to assert that differential game theory will be of no utility for
aerlal combat studies, one must not only be convinced of the
futility of the zero-sum approach, he must also be ignorant of
the much richer problem area implied by generalized control theory.

Given that generalized control theory is significant concep-
tually and that solutions to the more general problems posed by
it would be extremely useful, it 1s natural to ask:"What problems
are raised by adopting this broader outlook?" It seems to us that
the most important and most relevant problems are those associated
with performance measures and information structures. We now dls-

cuss briefly some of these problems.

While it has long been recognized that a single (scalar)
criterion is often not an adequate measure of system performance,
1t has not been generally recognized that 1t is possible to con-
sider simultaneously several criterion functions. The chief
price one pays for such consideration is that i1t 1s not clear what
one means by a "solution" to a vector-valued optimization problem.
¥

The table indicates that the names for the various problem cate-
gories may be inadequate. For example, a more definitive title
for (3) is "a 2C/2J/P1 problem in generalized control theory."
However, the names are firmly entrenched and one can hardly ex-
pect such a new terminology to take hold at this stage.

12



Classification o

TABLE 1
f Optimization Problems

i Infor-
Con- Cri- mation
troller |terion |[Set
B o
7 One o
» ]
) q o | o o
—~ ™ N o
o, ~l d o |« | n )
o [an) o [0] [ Lal &
o d ool e )
vio|lH|lolold aialm~ b
ciz|lzlgl=z=]lgq ols]|3 o
o ole|l=lola|ld Aalxw]| = [0
(1) Deterministic Optimal
| _Control v v v/
(2) Stochastic Optimal
| Control v v
(3) Zero-Sum Differential
| Game . o Yl v Y/
(4) Stochastic Zero-Sum
Differential Game v Y v
(5) Vector Value Optimization
.. _Problem (Negotiation pb.) Y 1 v
(6) Nonzero-Sum Differential
... Games __ v M v
(7) Team Theory v Y v
(8) MC/MJ/MI pb. v v Y
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Many new concepts, such as the "prisoner's dilemna", the Nash
equilibrium, the negotiation set, and the minimax solution,

arise (Ref.8). However, this ambiguity merely forces one to
sharpen his definition of optimality, actually leading to a

better understanding of the multi-criterion problem. We realize,
for example, that the often used device of optimizing one cri-
terion that is a weighted sum of the many criteria that require
consideration is but one of the many ways of resolving the problem
(Refs.9,10). Methods for performing this kind of reduction are
described in Refs. 11 and 12.

With respect to aerial combat, it is reasonably clear that a
single criterion is not adequate for certain fighter vs. fighter
duel situations. In a dogfight, for example, the combatants may
change roles from pursuer to evader many times during the course
of an engagement and the goals associated with the two roles are
obviously different. 1In addition, pilot preferences and overall
tactical considerations enter the problem in a nontrivial way.

We shall have more to say about some of these matters in Chapter 5

where we discuss the dogfight problem.

One of the more lnteresting aspects of generalized control
theory 1s the problem of information structures. As noted earlier,
in traditional control problems the information pattern 1s always
assumed to be complete in the sense that the controller has access
to all the information available, whether it be perfect (determin-
istic) or imperfect (stochastic). This cherished concept 1s also
carried over to the zero-sum differential game. However, even for
these games we begin to get an inkling of the effect of informa-
tion on the outcome. (Ref.13) We find that open-loop (no informa-
tion) and closed-loop (perfect information) plays glve rise to
different conditions for the existence of saddlepoint solutions.

14



This has important implications with respect to the numerical
"solutions” of differential games.

In more general cases, the effect of Information patterns
can be overriding. Team theory (Refs.1ll4,15) is essentially a
study of the value of information in decentralized optimization
problems. Strategic missile defense and squadron vs. sguadron
ailr duels are basically team theoretic problems (e.g., what is the
value of the information that lets every fighter or missile know
the intended target of all fighters or missiles on its team? Or,
in other words, how much should we pay for completely centralized
control?). In nonzero-sum differential games, information patterns
can have a profound, and sometimes surprising effect. For example,
it can be shown that in some cases open-loop control can actually
outperform closed-loop control (to the benefit of both players)
(Ref.16). Finally, in all cases where there is more than one con-
troller and more than one lmperfect information set, the funda-
mental problem of information closure arises. This 1s the familiar
problem of "I know that you know that I know that you know.....
So far, this problem has only been resolved for the special class
of zero-sum stochastic differential games (Refs.16-18), and open-
loop team-theoretic problems (Ref.1ll), involving linear systems,
quadratic criteria, and gaussian noise. 1In these cases, the opti-

mal actions turn out to be linear functions of the information avail-

able to each player. This 1s not necessarily an expected result
inasmuch as one can cite a counter example of a two-stage, closed-
loop team-theory problem for which the llnear controller is non-
optimal (Ref.19).

Zero-Sum Deterministic Differentlial Games--We have just seen

that zero-sum deterministic differential games+ are a special

+Hereafter, unless noted otherwise, we shall mean this type of

game when we speak of differentlal games.

15



class of what we called generalized control problems. As such,
these games are not subject to most of the difficulties concern-
ing performance measures and information structures that weré
described in the previous section. However, even if we restrict
ourselves to this class of problems, our troubles are far from
over. From an analytic standpoint, the prime source of difficulty
is that global differential game solutions are frequently charac-
terized by the existence of a variety of singular surfaces
(Refs.20-23). Consequently, techniques for obtaining answers
that rely on "smoothness" assumptions must be used with great
care; solutions cannot be propagated readily across the singular
surfaces. To make matters worse, there do not appear to be gen-
erally effective procedures for the treatment of these surfaces.
They seem to tax the ingenuity and resourcefulness of the best of
researchers. However, from a practical point of view, many of
the singular surfaces are somewhat less important. To a large
extent, their existence depends on the Infinite divisibility of
time and space and, in practice, these quantities will often be
discretized. Isaacs' book (Ref.3) contains the most complete
discussion of these singular surfaces. They will not be pursued

further here.

The numerical solution of differential games is very diffi-
cult. However, 1f one wishes to determine the optimal open-loop
control against an opponent operating with known guidance logic,
that may or may not be optimized, then the problem can be solved

T Although these are

for reasonably complex situatlons.
useful kinds of results, it must be recognized that they do not
represent true differential game solutions. They are simply
solutions to an optimal control problem in which the control of
one of the players has been predetermined. General numerical

techniques for obtaining true differential game solution do not

+For example, for problems involving, say, 15 state variables

(Private Communication: B. Morgan, AF Academy).
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exlst. Of course, this state of affalrs should not be surprising
since we cannot even solve the general closed-loop optimal control
problem. Suboptlimal closed-loop solutions to differential games
may be obtained using successive approximation procedures. The
technique 1s essentially to optimize, repeatedly and alternately,
the strategy of one player while holding fixed the strategy of

the other player. It can be shown that the successive maximum

and minimum values attained by the payoff bound the saddlepoint

value.

Aerial Combat Problems

To our knowledge, the most complete survey of aerial combat
problems 1s contained in the 1967 Rand report by Greene and
Huntzicker (Ref.24). They divide research in this area into the

six categories listed below.

(1) Instructional material, historical descriptions, and test

documentation.

(2) Studies of subsystems: These studies deal mostly with per-
formance of ordnance subsystems and of alrcraft. (A notable ex-
ample of the alrcraft performance studies 1s the "energy maneuv-
erability" work of Rutowski (Ref.25).)

(3) Game-theoretic studies of duels: Despite the title, this
work does not include research in differential games. Instead,
it covers early efforts to apply ordinary game theory to problems
of ordnance selection and timing of firing.
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(4) Detalled studies of combined system performance (fighter vs.
predictable target): Fighter vs. bomber problems are typical of
the examples studied here. These efforts were inspired largely
by post World War II interest in bomber defense.

(5) Air-Battle simulations: The problems here involve extensive
simulation studies of aerial battles involving squadrons of air-
craft. Resource allocation, rather thai. the details of control
action, 1s the primary item of interest 1n these studies.

(6) Duel between maneuvering vehicles: As noted earlier, this
type of problem has become important agaln as a result of Vietnam.

We shall devote the rest of this discussion to the last of
the above categories, inasmuch as this study was aimed at aerial
combat problems that fall within this class. It 1s useful to
distinguish two sub-categories of (6): the missile vs. missile
situation typified by the MIRV-ABM example; and the fighter vs.
fighter situation involving the action of human pllots.

In the missile vs. missile case, the dynamical equations can
often be approximated by relatively simple kinematic laws because
of the high accelerations and short engagement times involved in
the duel. This will help to simplify any differential games that
are formulated 1n connection with these problems. Moreover, con-
trol strategies are not necessarily the most important considera-
tion here and much of the work in category (5) may be applicable.

The fighter vs. fighter duel, which is the problem of interest

here, appears to be the more complex problem. Such duels are
often characterized by strenuous maneuvers 1n three dimenslons.
Rapid changes in altitude, velocity and, hence, in turn radius
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for a given load factor, as well as large variations in 1ift,
thrust and drag are experienced frequently. This renders much

of the analysis done earlier in connection with bomber defense
(where constant altitude and velocity are assumed) quite inapplic-
able. In terms of problem complexity, the fact that the opponent
is consldered to be intelligent 1s perhaps of greater significance.
This consideration leads to a kind of sequential decislon problem
that only recently has begun to recelve attention.

The Simulation Approach--Several efforts have been undertaken

to produce a three dimensional, two-slded simulation of maneuver-
ing air-combat. The Differential Maneuvering Simulator to be in-
stalled at Langley Research Center 1s one of several noteworthy
simulation attempts (Refs.26~29). The value of simulators as an
effective research tool for studylng complex problems 1is well-
known; but the limitations associlated with complete relliance on
simulation studies are also clearly understood. Simulation is
not economical when it is used in a bllnd, shotgun manner. Its
efficient utilization depends on the abllity to identify inter-
esting problem areas and to define critical situations and param-
eters within these areas. 1In thls regard, analytical results,
even for simplified problems, can be most helpful insofar as they
serve to define situations that warrant more detailed study
through simulation.

The Usefulness of Differential Game Theory--The raison d'etre

for differential game theory is the study of decislon problems of
the type encountered in fighter vs. fighter duels. Thus, it is
natural to expect that attempts to apply the theory to such prob-
lems would be made and thls 1s indeed the case. For example,
differentlal game theory has been used to study the control poli-
cies for alrcraft during short engagements in which the initial
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conditions are reasonably well-defined and range over a small set
of values. This kind of study has been carried out at the Air

T tt

Force Academy and at Rand '. It is useful for identifying simple

maneuver strategies for human pilots to follow.

Another area in which differential game theory has been use-
ful is the identification of regions in the relative position-
velocity state space that are favorable to each alrcraft. Para-
metric studlies of the tradeoffs between design parameters of the
aircraft and variations of the boundaries of these regions can
yield meaningful insights. As noted above, such analyses are
also useful in conjunction with simulation studies. The problem
of the Homocidal Chauffeur due to Isaacs (Ref.3) is a prime example
of this kind of analysis. The efforts of Breakwell and Mer=z
(Ref.20), Meier (Ref.30), and Miller (Ref.31) all fall within
this category of investigation. We have also followed this ap-
proach somewhat in our examination of the dogfight problem, to be
described in Chapter 5.

All of the above studies have dealt with problems that were
greatly simplified. None of them have led to general techniqgues
for treating more complicated fighter vs. fighter problems in an
efficacious way. This 1s not surprising in view of the previously
mentioned analytic and numerical difficulties associated with d4dif-
ferential games. On the contrary, 1t would have been astonishing
if such methods had emerged from these studles. Indeed, from our
vantage polnt, it 1s difficult to belleve that general techniques
for the direct solution of differential games will become availl-

able in the near future.

+Private Communication: B. Morgan.

++Private Communication: R. Spicgp.
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What then are the prospects for solving more complicated
fighter vs. fighter combat problems? It seems to us that there

exists a possibility for solution that heretofore has not been

seriously explored. The approach involves
Markov game theory. It 1s based primarily
sumptions: (1) pilots can only resolve the
degree of accuracy; and (ii) pilots choose
a finite collection of possible maneuvers.

the application of

on the following as-
state space to a finite
their maneuvers from
With these assumptlons,

the air combat problem can be reduced to one of controllable

Markov chains. From both an analytical and
polnt, this problem is much simpler than a
ferential game.

a computational stand-
"corresponding" dif-

The Marknv game approach to aerial combat problems will be

described in detall in the next Chapter.

Before ending this dis-

cussion, however, we should note that the approach is not com-

pletely divorced from differential games.

In fact, although this

is not the viewpoint we prefer, one can think of the technique

as a way of obtalning approximate solutions to differential games.

We will say more about this later.
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3. A COMPUTATIONAL APPROACH TO AERIAL COMBAT PROBLEMS

We have Just suggested that an approach to the solution of
manned aerial combat problems that involves the application of
Markov game theory could prove most fruitful. 1In this chapter
we develop such an approach. We begin by showing how the intro-
duction of two physically motivated assumptions leads to the
formulation of the aerial combat problem as a meaningful discre-
tized game. Then, concepts of Markov process and state increment
dynamlic programming are used to develop a feaslble computational
scheme for solving thils game. Two examples that demonstrate the
application of the technigue are presented in the next chapter.

Problem Formulation

As we saw in Chapter 1, an aerial combat between two vehicles
may be described mathematically as a zero-sum differential game.
For ease of reference, we repeat below the equations that serve to
define such a game:

x(t) = f£(x(t),ult),v(t)) x(t)) = xJ (3.1)
u(t)ev , v(t)ev (3.2)
3 (u,v) =f L(x(t))dt (3.3)
0
x(T)eR ;3 T = free (3.4)
23
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Briefly, the components of x(t) represent the alrcrafts' positions,
velocitles, etc., at some time t; the game terminates at the first
time T that x enters a prescribed capture region R; and, the objec-
tive of the game 1s to find control strategles u¥*eU and v*eV that
vleld a saddlepoint of J.

Most of the work in zero-sum games assumes perfect information.
Unfortunately, in manned aerial combat situations the pilots
rarely have precise knowledge of the state x(t) and must base their
control actions on imprecise estimates of the current state of play.
We have attempted to include this physical constraint directly
in the problem formulation. Our approach is to decompose the
state-space X (or actually a compactified representation X of §)+
into a2 finite number of disjoint blocks SO’SI""’SN' These blocks
may be of arbitrary size and shape and satisfy

N
_)£=USi;SO=R
1=0

As an example, consider a game played in a horizontal plane
with both combatants having constant velocity. Here the blocks
Si could be meaningfully associated with crude position estimates

(e.g., clock angles-off and suitable range discretizations)++.

+In order for the decomposition to be finite, X can be artifi-
clally bounded by letting |jx}|=C; = arbitrary be a reflecting
or an absorbing barrier. In the }atter case the game ends when-
ever ||x|[>Cy.

++An example of such a game with thlis type of state-space decom-
position is studied in Chapter 4.
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We assume that both players know the system state only to
within a block Si; a player cannot discern where the state is
within Si’ but only the fact that g(t) is somewhere (with,e.g.,
uniform probability) in the known block. Thus, the original
state-space has been discretized and the blocks Si may be thought
of as "states" for a discrete game.

Transitions from block to block, 1.e., changes in state, take
place under the influence of appropriate control actions. We may
also discretize the control spaces in a meaningful way. In particu-
lar, we assume that the players' control strategles are constructed
from finite sets of "canonical control maneuvers,"

U
o

{gl(-), f(-),...,g"‘(-)}
(3.5)

Ve

{1, v, By

These sets can encompass basic control maneuvers such as various

g turns, sharp pull-ups or dives. They can also include more
speclalized or complex maneuvers such as a "scissors" or a "yo-yo".
Alternatively, the sets Ua and VB
guidance laws (e.g., direct pursult, proportional navigation, etc.).

could be composed of various

In any case, the selection of a particular maneuver by a player
corresponds to his choosing a particular "control history" to be
employed over some subsequent time interval.

Notice that this form of control discretization is quite
different from that ordinarily used in solving optimal control prob-
lems numerically. We have not quantized the range of control
values. Rather, we have discretized the space of control functions,
i.e., we have restricted the players to a finite set of control
choices or decisions.
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The approach to discretizing the control space was also moti-
vated by physlcal considerations. It 1s based on the belief that
pllots learn certain "stylized" maneuvers in training for aerial
combat. Then, in a battle, a pllot selects a particular maneuver
that best serves his goals based on a relatively crude assessment
of his situation vis-a-vis his opponent. It 1s easy to see how
the combined control and state space discretizations reflect this

situation.

In the next section 1t is shown how the above assumptions
reduce the aerial combat "game'" to a problem of controllable
Markov chains, i.e., to a discrete Markov game. The solution of
the discretized game is a blueprint for optimal play, i.e., a way
of deciding which controcl maneuver 1s best to use in each of the

perceived states S, (in other words, a palr of optimal strategies

i
or feedback control laws).

The Discretized Game

We are now in a position to represent the aerial combat
problem by a game defined over a discretized domain. To accom-
plish this, let us suppose that a particular palr of maneuvers
(geUa,XeVB) have been selected by the players. Then, a given
state x(t) would evolve to some new value under the influence of
the dynamic equations of motion (3.1). However, the "actual"
state x(t) 1s not known; all that is known 1is that z(t)esi. Hence,
a particular trajectory cannot be "followed" and the most that
one can hope to determine are the probabilities of transitions
between blocks, under the action of a particular maneuver pair.
We define
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2 probability of a transition from block S

pij(g,y_) p
o block S, with maneuvers (u,v).t

i

It 1s clear that the transition probabilities will play the same
role in the discrete game that the equations of state (3.1) played
in the continuous game. Inasmuch as we assume that S0 = R 1s an
absorbing state, we have

0 1#0
Po1 © (3.6)

1 1=0

which 1is equivalent to the "stopping" rule of (3.4). Only in

rare cases will 1t be possible to determine the pij's analytically.
However, they can usually be obtained numerically (e.g., by Monte-
Carlo methods). A technique for computing the pij's will be dis-
cussed later.

The formulation of the original problem as a dlscrete Markov
game in whieh transitions from any givenstate,Si, to any other
state, SJ’ are allowed would reguire storage of the transition
probabilities pij(g,z) for all i=1,...,N, j=1,...,N and all a*B
pairs u,v. If N 1s 1000 and each player has a choice of a=g=5
possible maneuvers, one would have to store 25 x 106 numbers - an
unreasonable requirement for most computer facilitles. Fortunately,
there 1s a way of simultaneously reducling the storage requirements
and computational demands of a conventional Markov game formulation.
The approach 1s based on the nature of the problem and uses con-
cepts of Larson's "state-increment dynamic programming." (Ref.32)

+A1ternative1y pij(g,!) can be regarded as the fraction of states

in blocks%_that are driven (evolve) into block SJ.
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In particular, we assume that once the players choose their con-
trol maneuvers u,v in a given state Si’ they must continue to
employ these maneuvers until a change in state (to, say, SJ)
occurs; once a state transition 1s percelved, the players may
change to a different maneuver. This 1s appealing from a phys-
ical viewpoint since control decislons are made on the basis of
perceived information, which in thls case, changes only when Si»SJ
transitions occur. In other words, a new declsion 1s made based
on the perceived outcome of the old decilsion.

From a mathematlcal viewpoint thls means that, in one stage,
state transitlons are restricted to only adjacent blocks before
the players reoptimize over their sets of allowable maneuvers
(see Filg. 1). The net effect is a tremendous reduction in the
amount of numbers piJ(E’!) that must be stored. For a three-
dimensional state space (discretized rectangularly) and the num-
bers given earlier, we now need to store only 25-1000~33 = 675,000
numbers (in contrast to the 25 million numbers needed if transi-
tions between all blocks are allowed).

To complete our formulatlion of a discrete Markov game we
must dellneate the goals of the game. We begin by defining

ciJ(E’l) = the average cost of a transition from
Si to S'j using the maneuver pair (u,v).

At this polint, we needn't relate the c11 to the continuous dif-

ferentlal game payoff, but it 1s posslble to do so if desired.
Specifically, we can write

cyy(u,yv) = L(gJ)AiJ(p_,z) (3.7)
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where L is the integrand of the payoff of Eq. (3.3), Ej is the
centroid of block S1 and Ai1(u v) is the "average" time of a

transition from Si to Sj using the pair (u,v). Then, e.g., if
L =1, cij(g,g) is the average time to go from S; to SJ.

The cij's are "one-stage'" costs that wlll accumulate as
transitions between discrete states occur. The total cost will
depend on the initial state and on the strategies employed by the
players. Recall that a strategy corresponds to a control choice
for every state of the game. Hence, we define a u-strategy (or
policy), T, @S 2 set of N control maneuvers (one for each state),
l.e., m, = {u(1),u(2),...,u(N)} 5 u(4)eU_, such that the maneuver
u(i) is applied whenever the state of the game 1s Si.++ A similar
definition 1s made for T We denote the total cost incurred for
a game starting in Si and played with the policy pair 7 = (nu,nv)

by V'(1). Clearly, V'"(i) satisfies the equation

V(1) = D by (D), vV + ey (uli),v(1))] (3.8)
3=1

Note that the summation need only be taken over blocks Sj adjacent
to Si' The goal of the game 1s then to find a strategy pailr
n¥ = (na,wg) such that

*
V™ (1) = Min Max V'(1) = Max Min V'(i), for all i (3.9)

m ™ m m
u \% v u

+By assuming that maneuvers change only upon a change 1n percelved

state, time becomes, in effect, a dependent variable.

TTWe see that strategies are merely feedback control laws defined
over the space X.
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This completes the formulation of the Markov game. To re-
capitulate, the relation of this game to the continuous differen-
tial game formulated earlier 1s as follows: the discrete "per-
ceived" states, Si’ replace the continuous state x(t); the transi-
tion probabilities, p13(5’1>’ play the role of "equations of
motion"; the delineation of So and the definition of Poq (Eq.3.6),
provide the equivalent termination criterion; and, the objective
of finding an optimal strategy palr «¥* that satisfies Eqg. (3.9)
replaces the goal of finding a pair (u*,v¥*) that provides a
saddlepoint of Eq. (3.3). In the next section we discuss methods
for solving this discrete Markov game.

Solution of the Markov Game

There has been considerable effort devoted to the analytic
study of Markov chains with controllable transition probabilities.
Iterative schemes for the solution of single control (one-sided
game) problems appear in Howard (Ref.33), Zadeh and Eaton (Ref.34)
and Kushner and Kleinman (Ref.35). An excellent study of Markov
games appears in Chamberlain (Ref.36) as well as in Kushner and
Chamberlain (Ref.37). 1In this section we present an iterative
technique, based on Refs.35-36, that can be used to solve the dis-
crete problem Just formulated.

Computation of Transition Probabilities--Before discussing

the iterative technique, we indicate the method we use to compute
numerical values for the transition probabilitiles piJ(g,!). It
1s closely related to Monte-Carlo methods. The first stage in
thls process 1s a logical sequential ordering of the blocks {Si}‘
For a given pair of maneuvers (u,v), M points are uniformly dis-
tributed+ over a gilven block Si' Starting at each one, 5(0)=§,

+Other random distributions of states within a block could alterna-

tively be considered.
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of the M points, the equations of motion (3.1) are integrated for-
ward in time until x(-) enters an adjacent block, say, SJ. The
time

A Aij(g,g,z) <A (3.10)

<
min — max

for this transition is recorded. Amin and Amax bound the block

transition times, and are generally dictated by the physics of the

problem. Note that Aij(g,g,z) = A, only 1f x(+) has not left
block S,.
i
We let MJ be the number of points initially within Si that
are driven to SJ (with the given strategies u and v). Then
pij(g,g) ~ My /M (3.11a)
and
biy(u,v) = Z, By g (E,U,V)/My (3.11b)
éeS1

= average transition time from Si to SJ
Finally, ciJ(E’X) is calculated (e.g., as in Ea. (3.7)). The
quantities ciJ and piJ for all pairs (u,v) are placed in computer

stor'age..r

Iterative Technique for Game Solution--The game situation is

now specified numerically in terms of the transition probabilities

13 The original system equations plus all

and the "rewards" c

+Actually one need not store all the ciJ's but only the N numbers

s =D C1gPay:
3
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stochastic and nonllinear effects of the problem are absorbed, in
essence, by the piJ(g,x). The original cost functional 1s charac-
terized by the cij(g,z). Note that Py 4 does not depend on the
cost functional used.

To apply an iteratlive scheme to the problem, we first assume
that there exists a pursuer policy %u such that, for any evader
policy LI there exists a finite probability that the capture
reglion S, can be reached in a fixed number (N) of stagis, regard-
less of the policy m, chosen. This guarantees that A (1) will
be finite for all 1.t

Recall that the optimal policy =¥ = (wa,ws) and the optimal
cost V¥(1i) satisfy Eqs.(3.8)-(3.9), i.e.,

N
VE(1) = min max { D p, (,W)VE() + ey (u,v)1p(3.12)

HeUa veV J=1

B

A straightforward method of solving for V¥(i) is given by Chamber-
lain (Ref.36). The method is based on the following:

Theorem 1: If, for any N-vector r

min max:E:pid(u,v)[rJ+ciJ(u,v)] = max min}E:piJ(u,v)
J J

{r.+c

3 1J(u,v)] (3.13)

+An alternate approach is to artificially bound v™(1) to be 1less

than some fixed constant Vmax'
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then

a. There i1s an optimal policy pair =% = (ﬂa,ﬁs) such that

% (n¥,7¥) " )l
V(wu wv) <v LA { ¥ , (3.18)

(n%,7%)
b. The value of the game V¥ = V

of the sequence

is the unique 1limit

vR(1) = min max :E:pij u, v)[vh- l(J) + cij(u v)]
u =1
N
= max min :E:pij(u,v)[Vn_l(J) + c

v

iJ(u,V)J

(3.15)

We remark that if condition (3.13) 1s not satisfied (i1.e., a
saddlepoint cannot be guaranteed) then the terms in braces in
Eqs. (3.14)-(3.15) are omitted. In this case V¥(1i) is the value
of the majorant game; the resultant policies (nﬁ,ws) are the
majorant policiles.

The iterative scheme suggested by Ea. (3.15) bears a close
similarity to the Jacobi method for solving the linear systems of

simultaneous equations

VK(1) = D by V() + O, (3.16)
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namely, the algorithm

N
vi(1) = :E:pijvn_l(j) +Cy 3 v0 = arbitrary (3.17)
J=1

It is well-known that if the Jacobil iterations converge, then the
Gauss~Seidel iterations defined by

1-1 N
V(1) = Z Py V) + Zpij ™15 + c,
= 3=1
(3:18)

will generally converge faster (to V¥) than will Eq. (3.17).

This fact was first exploited by Kushner and Kleinman (Ref.35)
to improve the convergence rate of solutions to Markov control
processes (one-sided games). The extension to Markov games was
studied by Chamberlain (Ref.36). The main result is

Theorem 2: If the conditions of Theorem 1 are satisfled,
then

a. The sequence V(1) defined by

i-1 N

V(1) = min max :E: pij(u,v)vn(J) + :E:pij(u’v) vn—l(j)
u v - -
j=1 y=1

+ ;g;pij(u,v)cij(u,v) (3.19)

converges to V¥(1i) for any Vo(i) and all 1i.
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b. If V(1) = 0 for all 1 then
0 < V(1) < (1) (3.20)
and Vn(i), (1) converge monotonically to V¥(i).

Thus, the iterative scheme embodied in Eqgq. (3.19) is to be
preferred over that of Eq. (3.15). One is guaranteed of a rate
of convergence greater than or equal to the iterations of Theorem
1. In addition, the scheme of Eq. (3.19) requires less computer
storage since the values (1) are updated as soon as they are
obtained, rather than walting until all blocks have heen processed.

Summary

In this section we have presented a different conceptuallza-
tion of the alr-to-air combat problem. Our approach was based
primarily on two physlical concepts, one relating to the available
information sets and the other relatingto the nature of the con-
trol decislions. This approach allows us to view the original
aerlal combat problem as a discrete Markov game, with all stochas-
tic and nonlinear effects belng absorbed in the transition proba-
bilities.

A relatlively new numerical method, based on the Gauss-Siedel
technique for solving linear equations, provides a convergent al-
gorlithm for solving the problem. The resulting solution will pro-
vide the optimal strategles for each player.

OQur procedure of applylng Markov theory 1s different from
most other applications of Markov processes to contlnuous control
problems. We transform the original physlcal situation directly
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into the context of a discrete Markov game. We maintain that

when physical constraints are incorporated, it is this latter prob-
lem that 1is more basic and more closely represents the actual

combat situation. Other approaches (Refs.35 through 37) first

apply Hamilton-Jacobi theory to the original continuous problem.

They then solve the resultant Hamilton-Jacobli partial differential
egquation by a particular discretation scheme that bears an analogy
with Markov games. However, no Markov "game" is actually formulated.

In the following chapter, we apply the theory and the asso-

clated computational scheme to study two classic "differential
games".
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L., TWO EXAMPLES

In this chapter, the theory and computational schemes de-
veloped in Chapter 3 are applied to study analogues of two well-
known differential game problems: Issacs' classic "Homicidal
Chauffeur Problem" and the more complex "Two Car Problem." In
each case we dlscuss the results of our Markov formulation in
light of known analytic properties of the solution to the corre-
sponding continuous game.

Homicidal Chauffeur Problem

The Homicidal Chauffeur Problem 1s described in detall in
Issacs (Ref.3) and in Breakwell and Merz (Ref.20). Briefly, a
pursuer P (chauffeur) moving at constant speed Wy with a finite
minimum turning radius R, chases an evader E (pedestrian) moving
at a lower canstant speed W, but with an infinitely small turning
radius. The game ends (capture) when the mutual distance becomes
less than a given capture radius L. The pursuer strives to mini-
mize the time-to-capture while the evader tries to maximize it.

The equations of moticn for this problem, written in a pur-

suer centered system of coordinates are:

u + w2 sin v

"
1]
|
A
B

(4.1)

y = =< xUu-w, + W, cOs Vv
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where
(x,y) = position of E relative to P

pursuer's rate of turn (P's control), |u| < 1

-~
"

relative angle between velocity vectors of E
and P (E's control)

<
]

The parameter values used 1n our study of this problem were

The analytic solutlon to the above problem is characterized
by a set of singular curves in the (x~y) state-space. Using
Issacs' terminology, the curves consist of barriers, dispersal
curves, universal curves and equivocal llines. Some of these
curves are shown 1n Fig. 2.+ Of the various singular curves, the
barrier appears to be most important from a practical point of
view. Under optimal play, no trajectory can cross the barrier and
the min-max time to capture 1s dlscontinuous across this curve.
Moreover, the barrier (along with the equivocal curve) serves to
separate regions of different pursult strategy. Essentially, the
optimal pursuit strategy is to turn hard away from the evader when-
ever E is in the region enclosed by the barrier and hard into E
otherwise. [The optimal pursuit control is u=0, (i.e., a straight
dash) on the universal line. On the dispersal line u=+1, i.e.,
either control choice will result in the same optimal cost.] A
typical optimal trajectory ABCD 1s also shown in Fig. 2. This
trajectory 1s based on E using his penetrating strategy [Ref.3] on
the equivocal line. At point B the pursuer switches from a hard
turn left (u=-1) to a hard turn right (u=+1l) and he switches to a
dash (u=0) upon intersecting the universal line at C.

Since the game is symmetric with respect to the line x=0, the
solution for x>0 is shown only.
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Unfortunately, the above 1s not the complete analytic solu-
tion to the Homicidal Chauffeur problem. In the shaded region of
Fig. 2 the solution 1s not completely known. Breakwell and Merz
(Ref.20) have spent considerable effort towards understanding
the nature of the solution in thils region. They found numerous
esoteric switch curves and equivocal curves with which to charac-
terize the optimal solution, yet the solution 1s still not com-
pleted.

A Computational Approach to the Homicidal Chauffeur Problem

Problem Reformulation--Our characterization of manned combat

problems, coupled with the computational framework that we have
developed, was applied to the above problem. We decided to de-
compose the state-space X into blocks Si with respect to the
polar coordinates (r,6) where

2 1/2

(x +y2)

tan_l(y/x)

=
|

(4.2)

<D
]

These coordinates seem most natural for a problem of thls type
played in the plane.

In order to bound the state-space, a reflecting barrier was
imposed at r=10, so only the region r<10 was considered. In ad-
dition, by problem symmetry, only the region 0585180° was Investi-
gated, and a reflecting barrier was also set along the y-axis.
Thus

X = {(r,8): r<l0, 0<6<180°} (L.3)
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A 20° discretization of the angular coordinate (A6) was
chosen along with a 1 unit radial discretization (Ar). Thus,
there was a total of 81 state blocks plus the capture circle
(R=So) that comprised the (compactified) state-space X. The
state-space decomposition, along with our particular ordering
of the blocks 1s shown in Flg. 3.

The next step in our analysis was the specilfication of the
sets of "canonical maneuvers." For the pursuer we chose minimum
radius left and right turns and a straight ahead dash; so,
u=-1,+1,0, respectively. (Intermediate maneuvers, e.g., a 2R turn,
could be included if desired.) The evader, on the other hand, can
change hls direction instantaneously. Thus, he chooses the angle
and w,. We constructed a finite

1 2
set of evader controls by restricting v(t) to take only the values

v between veloclity vectors w

nn/4, n=1,3,5,7. Hence E has a total of four different "maneuvers"
from which to choose his control.

Given the state-space decomposition and the particular cholce
of control sets, the transitlon probabilities piJ(u,v) were com-
puted for all 81 blocks Si for each of the 12 different pairs of
control strategies. A total of 36 points were uniformly distributed
over each block Si' For a given strategy pair (u,v) the equations
of motion (4.1) were integrated starting from each initial point.+
The integrations were stopped when the resulting trajectory left
Si’ or met a reflecting barrier. The fraction of polints that en-
tered SJ was taken as piJ(u,v). Since transitions are ailowed
only to adjacent blocks, a maximum of 9 nonzero numbers need be
computed and stored for each block Si'

T = =
We chose Bpan = 1, A = 4.,0.
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For simplicity and computational ease, the quantities
cij(u,v) were all set equal to 1. Thus, the payoff for the
Markov game 1s the "number of block transitions to capture," as
contrasted with the "time to capture" payoff of the original
Homicidal Chauffeur problem.

Computational Solution--Having formulated a well-defined
discrete Markov game in terms of the transition probabilities

p1J and costs cij’ the computational algorithm of Theorem 2 was
applied. We sought the majorant policy pair (i.e., min-max solu-
tion) since we did not a priori verify the existence of a saddle-
point. The algorithm converged monotonically to V¥, (n:,nt) in
about 60 iterations, starting at Vv°(i) = 0 for all i.

The resultant discrete solution is shown in Fig. 4. The
number within each block is the optimal cost V¥(i). For blocks
in the region enclosed by the solid curve it 1s optimal for the
pursuer to turn away (u=-1) or flee {(u=0) from the evader. Else-
where P turns into E (u=+1). Similar results hold by symmetry for
180°<6<360°. Note that this strategy will cause the resultant
state trajectory to "chatter" back and forth across the y-axis
prior to capture. This is a result of the pursuer's knowing E's
position only to within a block; hence, the disappearance of the
"universal line".

A comparison of the discrete solution with that of the cor-
responding continuous game is also found in Fig. 4. This compari-
son 1s somewhat tenuous because of the two different cost func-
tionals used, 1.e., time to capture vs. block transitions to cap-
ture. More importantly, however, we have not attempted to approx-
imate the continuous game solution. We have posed and solved a
basically different, but related problem — one that we feel 1is a
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more meaningful description of a physical situation. Nevertheless,
there are some conclusions to be drawn from such a 4discrete-con-
tinuous comparison.

First, the inclusion of the discretized u=-1,0 region within
the corresponding region (dashed curve) for the continuous game
can be explalned largely on the basls of the degradation of P and
E's position estimates. P's lack of perfect position information
causes him to adopt a more conservative strategy to avoid the
heavy penalties assoclated with making an incorrect decision.

For example, if E 1is located "above" the dashed curve P should
definitely turn hard right, or else the evader could be driven

into a region of very high cost. On the other hand if E is "below"
this curve, the state is already in a region of hlgh cost and the
resulting difference between u=-1l or +1 1s ot so pronounced.

Since the pursuer cannot distinguish with certainty on which side
of the curve E llies, the more conservative strategy 1s to apply
u=+1 in this vicinity. This 1s entirely consistent with "minimax"
notions and is a most interesting phenomena.

The evader on the other hand does not have a precise estimate
of P's position. This will result in E's not being able to direct
his velocity precisely away from P, Therefore, there arises some
probability that if u=+1,F could be driven unwittingly across the
dashed curve into a region of low cost, i.e., the "barrier" has
become "porous'". Thus P can capitallize on evader error in this
reglon by applying u=+1 and there results an additional "lowering"
of the strategy barrier.

There 1s a second interesting comparison to be found in

Fig. 4. 1In the continuous game, the optimal cost is sharply dis-
continuous across the barrier. Shown within each block of Fig.l
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is the optimal cost (average number of stages to capture) for the
discrete game. Notice how V¥(1i) strongly varies in the vicinity
of the dashed curve. It therefore appears that there is a "dis-
crete, smoothed discontinuity" in this region. This phenomena
can be illustrated further by plotting the block cost along a
radial segment for fixed 6. Figure 5 shows three of these step-
wise cost profiles. Also shown, for the given 6 slice is the
radial region through which the continuous barrier passes. Notice
that 1n all cases the continuous barrier passes through a region
in the state space where the discrete cost has decreased sharply
from block to block and has reached a minimum. From this point
on, the cost 1lncreases with r in a seemingly smoother manner.

The above demonstrates that 1t may be posslible to delineate
the region in the state-space through which the continuous cost
barrier passes. Needless to say thiswould give only a crude ap-
proximation iIn view of our generally crude decomposition of the
state space. A finer decomposition could conceivably give a
better approximation. Thus, although our approach does not in-
volve the approximation of continuous solutions, it appears that
our method does provide insight into some important characteris-

tics of the continuous game.
Two Car Problem
Perhaps the most obvious extension of the Homicidal Chauffeur

Problem is the situation in which both players have finite mini-
mum turning radii. This is the so-called "Two Car Problem" and

is discussed briefly in Issacs (Ref. 3).
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The equations of motion for this problem (written with respect
to a pursuer-centered system of coordinates) are similar to (U4.1)
and are glven by

l-wl
X=-g-yu + LB sin ¢

1

- (4.4)

y =g ¥Uu- LA + W, cos ] .

1

w w

w=ﬁi—u-ﬁ§ v 3 o Jul g1, Iv] <1

where Y 1s the angle between E and P's velocity vectors. Rl,u
and R2,v are, respectively, P and E's minimum turning radius and
rate of turn.

Thus, the two-car game is played in the three dimenslonal
(x,y,¥) state space and the geometric constructions that one uses
in two-state problems become rather awkward to apply here. There-
fore, it is not surprising that little is known regarding the
analytic solution to the two car problem. Issacs' (Ref.3) gives
the BUP (Boundary of Useable Part) and portions of the semi-
permeable surface (barrier) emanating from the BUP. Miller
(Ref.31) has numerically obtained a family of curves that give
parameter values for which the entire space is capturable (i.e.,
for which the evader cannot escape). There is little in the
literature beyond these results.

We began our study of the two-car problem by choosing a set
of parameter values for which capture was assured for all states.
The curves given in Ref.31 were used as a gulde; the parameters

chosen were
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Computational Solutlion to Two-Car Problem

As in the Homicidal Chauffeur Problem, we began our reformu-
lation of the two-car problem by choosing a meaningful state-space
decomposition. Decomposition of the x-y plane with respect to
r-6 polar coordinates was agaln chosen. Thls time the 6 coordinate
was discretized according to clock positions (i.e., every 30°).
Thus, assoclated with clock position j(1<j<12) we have the angular

sector
30J-15° < 6 < 30J+15°

i.e., a glven state block subtends an angle of 30°, centered at
a clock position.+

The radial coordinate r was discretized in 1 unit intervals
as before. A reflecting barrier was placed at r=10 to bound the

state space.

The ¢y coordinate was discretized in a manner that was moti-
vated by human estimation capabilities. A precise estimation of
relative velocity direction is generally qulite difficult to obtain
visually. Accordingly, the ¢ coordinate was decomposed into only

four segments:

TIn the Homicidal Chauffeur Problem there is a universal line and
a dispersal line at the 12 and 6 o'clock positions respectively.
We centered our blocks at clock positions 1n order to see whether
the existence of a universal/dispersal curve would be reflected
in suitable properties of the discrete solution.
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a) ise < ¢y < 135°: E moving from "left to right" relative to P
b) 135° < ¢ < 225°: E and P moving in "opposite" directions

c) 225° < Y < 315°: E moving from "right to left" relative to P

(-]

d) -=Us5 45° : E and P moving in the "same" direction

Thus, the state~space X was decomposed into 9:12:4 = 432
blocks Si plus the capture region

S, = {(r,6,y) : r < 1}
We felt that the resultant r-6-y decomposition was a reasonable
representation of the information sets avallable in an actual
encounter between two manned vehicles.

For the sets of canonical maneuvers we chose only the extreme
cases of: (a) hard turn right, (b) hard turn left, and (c) straight
dash. Thus, pursuer and evader each had a total of three control
maneuvers, characterized by u,v = -1,41,0 respectively.

Having decomposed the state space in a meaningful manner and
having assligned the sets of canonical maneuvers, the transition
probabilities piJ(u,v) were computed for all i,J] and pairs (u,v).+

+A total of 27 polnts per block was used (three points along each

dimension) with Am1n='l’ Am x=2.0. Each point was equidistant

from any adjacent point.

a
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Since transitions were allowed only to adjacent blocks, there

was a maximum of 27 non-zero numbers Py assoclated with a given

i. The resultant total of 432:27.9 = 102 numbers was efficiently

stored on a rapid-access computer file.+
Once again, for simplicity, the rewards cij(u,v) were all

set equal to unity. Thus, the original cost of "time to capture"

was replaced by "stages to capture'.

The resultant discrete Markov game that we formulated was
solved using the algorithm of Theorem 2. Only the min-max

solution was obtained for =¥ nt, V¥(i). The computed pursuer

>
strategy is shown in Fig. 6? It appears that P's strategy is
basically to turn into E, although there are a few blocks where
this 1is not tue case. In particular note that (except for a few
blocks) the pursuer's optimal strategy for blocks centered at

the 12 o'clock position 1s u = 0 (i.e. straight dash). To the
left of 12 o'clock u = =1 is optimal while u = +1 is optimal when
E 1s located to the right. Thus trajectories tend to converge

into the forward u = 0 reglcii which can be called a universal zone

(corresponding to a similar phenomenon in the continuous case).
Also note in Fig. 6 the existence of a region at the 6 o'clock
position where the pursuer can apply u = +1 with equal resultant
cost. This 1s expected by problem symmetry and 1s reminiscent
of the phenomena associated with dispersal curves in continuous
games., Hence, this region may be regarded as a dlspersal zone.

Unfortunately, a thorough interpretation of these results
requires an understanding of how the resulting state trajectory

*A conventional dynamic programming formulation of the Markov
game would require (432)2 « 9 = 1,7 x 10% such transition prob-
abilities.
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evolves in the three dimensional (r,6,y) space. Because the game
1s not symmetric with respect to the plane y = 0 (recall that
there was symmetry with respect to y = 0 in the Homicidal Chauf-
feur problem) the nature of state evolution may be complex. A
study of this type has been left for further research.

The optimal costs V¥ for the 432 blocks are presented in
Table 2. The blocks are indexed by the triple (1,5,k) 1s1x59,
1sj<12, 1<k< 4. Thus block SaBY includes the region

SaBY = {(r,0,y): a<r < l+a, 30B-15°<6<308+15°,
90Y-45°<y<90y+L45°}

Notice that the smalilest cost occurs for block 81,12,2 l.e. where
the evader is directly in front of P and on a collision course.
Notice also that there is a symmetry here, namely the costs are
equal for the following corresponding blocks.

Sig2 ~ 81,12-3,2
S.iy ~ S
154 ~ S1,12-3,4 for all 1,]

SiJl ~ S

i,12-3,3

Thls symmetry 1is entirely expected from physical reasoning.

In the study of the Homicidal Chauffeur problem we saw that
the contlnuous cost barrler was located approximately in a region
of the state-space where the discrete cost was at a "valley".
This fact, coupled with the data in Table 2, suggest that 1t may
be possible to demarcate a region in the state-space through
which the continuous barrler passes. This was done by plotting
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TABLE 2
Optimal Costs for the Two-Car Markov Game

Radial Position 1

23,06
53,83
59,54
59,24
61,37
61,51
60,86
59,56
49,56
27,94
12,32
13,69

23,44
51.77
56,43
56,60
58,71
58,92
57.36
57.39
55.87
4g. k4
19.92
21.04

26,66
42,87
49,22
52,40
55,68
57,15
55,74
53,95
51,60
49,79
24,77
25,43

30.33
36.41
U1,43
46495
52.22
55,81
54.52
k9.b1
be.4p
37.68
28,93
29,44

34,92
37.%1
41,28
48,27
53,33
57,21
54,53
49,11
43,85
36,88
32,80
33,71

39,33
41,95
44,69
51,06
55,52
58,78
56,22
50,36
44,25
38,78
37.090
38,23

43,13
45,66
48,32
53,77
57,17
59,89
57.57
52,34
46,61
41,99
42,98
42,01

46,93
49,44
51,66
58,16
58,16
62,32
58,61
54,31
49,82
5.52
G4, Te
45,72

52,085
51,94
53,78
56,09
58,54
60,48
58,90
55,61
52.39
48,96
4s.p9
48,89

18,68
50,64
59,88
60,69
68,71
60,24
59,92
68,13
59,56
50,56
18,69

8,18

21,88
51.88
56,94
58.27
58,15
58.70
57.48
57.82
56.65
51.80
21,87
14,92

26,94
44,29
51,21
54,40
55,68
57,62
55,89
53,95
50,97
UU.ZU
24,90
20,47

28,81
38.77
45,34
4.7
53,60
57.86
53,05
48.26
45.14
38.68
28,77
25,28

32,57
37,98
41,91
48,82
54,63
59.1u
54,07
L8, ug
41,65
37.86
32,53
29,48

36,78
41,47
44,89
51,11
56,47
60,26
55,992
50,71
bu,60
41,34
36,64
33,30

40,69
44,25
48,21
54,19
57,72
60.89
57,15
53,79
47,98
4u, 12
40,62
37.17

44,35
47,91
54,64
55,96
58,79
61,06
58,19
55,53
51,38
47,76
44,28
42,96

47.78
50,79
53,66
56,77
59,10
60,73
58,49
56,31
53,41
58,63
87,72
44,59

12,28
28,10
49,99
60,37
62,09
62,03
60,22
58,57
59,41
53,95
23,17
13,65

19.87
4,65
56.38
58.08
58,34
58.79
57.64
554,77
564,37
51.89
23,47
21,00

24,74
42,99
52,04
54,59
56,50
57,35
54,79
51,78
49,16
42,93
26,68
25,43

28.92
37.85
46478
49,98
55424
55,23
51,45
46,45
41,37
36.41
30,35
29,45

32,78
37,04
43,41
49,66
55,23
56,76
52,87
47,94
ue,99
37,u8
34,92
33,67

36,96
38,95
44,61
50,88
56,91
58,29
55,04
58,75
44,35
41,91
39,33
37,98

40,94
42,08
46,93
52,80
58,26
59,28
56,64
53,48
48,20
45,62
43,13
41,96

00.72
45,61
50,14
54,82
59,32
59,76
57,51
54,83
51,51
4o, up
46,94
45,71

48,07
49,04
52,71
56,13
59,62
62,01
57,88
55,69
53,57
51,89
50,87
48,89

21,73
48,69
51,19
59,21
62,47
61,93
61,29
58,31
51,16
40,91
21,86
16,14

23,22
35,90
50.95
56,72
58,782
59.0h8
57.56
55,86
50,44
36.03
23.28
21.61

27,07
35,37
47,48
53,087
56,71
57,40
55.76
52,28
46,95
35,18
27,10
25,69

30.76
35.27
43,34
49,31
54.06
56,89
53.28
48.6u
42,90
35.09
32.79
29,33

35,16
37,35
41,89
48,25
53,55
56,84
52,76
47,65
41,53
37,32
35,18
33,70

39.62
41,72
44,34
49,87
55,14
58|30
54,37
49,29
43,99
41,69
39,65
38,14

23.15
45,38
48,082
52,29
56,81
59,45
56,06
51,60
47.91
45,35
43,18
42,14

46,97
49,08
51,35
54,68
58,39
674,23
57,63
54,18
51,22
49,05
47,09
45,99

49,99
51,93
53,45
56,38
59,18
60,54
58,uP
55,87
53,32
51,89
50,03
48,93
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cost profiles (as we did in Fig. 5) and noting the regions of
raplid cost change. The results of thls analysis are shown in

Fig. 7. Unfortunately, there does not presently exist an analytic
solution to the continuous two-car problem wlth which to compare
our result. A partlal description of the barrler 1s given in
Issacs (Ref. 3) and bears some similarity in shape to the shaded
region of Flg. 7. Any further comparlisons at this polnt would
require more analytic research.

Summary

We have seen how our conceptualization of manned games of con-
flict can be used to solve existing problems. The results of solving
the Homlcidal Chauffeur problem show that our approach and tech-
nigque are baslically sound. The application to a three dimensional
problem indicates some of the future potential and usefulness of
the method.
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b) 135° < y < 225°

FIG.7 APPROXIMATE LOCATION AND SHAPE OF CONTINUOUS BARRIER:
FROM ANALYSIS OF DISCRETE COST PROFILES
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d)-45°<y < 45°

FIG.7 (CONTINUED)
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5. THE DOGFIGHT PROBLEM

Thus far, we have been concerned primarily with pursuit-
evasion games. These games are important in the study of aerilal
combat but they represent a simplification of realistic aerial
duels, or "dogfights". In this chapter, we consider the "dog-
fight" problem. We begin with a general discussion of the problem
and develop possible approaches to it. Then, we examine a "simple"
example 1n order to illustrate the ideas involved and to indicate
the difficulties inherent in the problem.

Some General Considerations

In a pursuilt-evasion game, one player (the pursuer) attempts
to destroy or capture his opponent (the evader) whose goal is to
avold this outcome. The situation in a realistic aerial duel, or
"dogfight", 1s more complicated in that each participant wishes
to destroy his opponent and each wishes to avoid extermination.
Nonetheless, it is posslble to formulate a differential game that
embodles the essential elements of a dogfight. Let us see how this
might be done.

There are four possible outcomes in a dogfight between two
vehicles (say, A and B). These are: (i) A destroys B; (ii) B
destroys A: (iii) A and B are destroyed; and (iv) neither A nor B
is destroyed. With each of these "outcomes" we can assoclate a
terminatlon criterion for the game. For example, consider the
two vehicles as point masses moving in a plane. Let each vehicle
have a region R(.) (of, say, weapons effectiveness) attached to
it; the orientation of the region may depend on the direction of
the velocity vector of the corresponding vehicle, e.g., as illus-
trated in Figure 8. Suppose that a vehicle 1s destroyed the
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FI1G.8 SPATIAL ORIENTATION OF TWO VEHICLES WITH
REGIONS OF COMBAT EFFECTIVENESS.
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moment it enters the region of weapons effectiveness of his
opponent. Then, the termination c¢riterion corresponding to out-
come (1) is that B enter region RA(BERA). Simllarly, outcomes
(1i1) and (i1ii1) are characterized by (AERB) and (BERA and AeRB),
respectively. Finally, the fourth outcome is characterized by
conditions that A never enters RB and B never enters R, for the

A
duration of the game.

More generally, let x denote the state of the game (it evolves
according to some prescribed differential equation) and let wA and
wB be the sets of states corresponding to outcomes 1 and 2, respec-
tively. Then the four "outcomes" of the game are described by the
following terminal constraints*

1. x € ¥,: (A destroys B)
2. X € Vg: (B destroys A)
3. x €%, (YVy=1y,,: (Both A and B destroyed)

b, x eV, Yy =19 (Neither A or B destroyed).

D
The game terminates the first time X enters either WA, wB or wAB'
If it never enters any of these sets (i.e., xewD) during the en-
tire play of the game, we have a "draw."

¥

wA(\ wB and wA LJ wB denote the intersection and union of wA and
wB, respectively, and the "bar" indicates the complement of the
"parred" set. Thus, Xey, f\wB means that x 1s in both b, and yg,
and EEWA U wB means that x 1s not in wA or wB.
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Clearly, for player A, outcome 1 1s most preferable and out-
come 2 least preferable. The preference ordering of outcomes 3
and 4 is not obvious. Undoubtedly, most pilots would prefer the
fourth outcome but one can easily envision situations in which
the third outcome is preferable from an overall strategic point
of view. For illustrative purposes let us assume that player A
prefers mutual destruction to mutual escape and that player B has
the same preference. Then, the dogfight problem can be formulated
as a nonzero sum game with, for example, the following terminal
payoff functions

xe¥y Jp = 0 Jp = 3
XeYg Jp = 3 Jg =0
XeVpp Jp = 1 Jg = 1
xevp Jp = 2 Jg = 2

In this case players A and B attempt to minimize JA and JB, respec-
tively. Notice that if there is a "duel to the death" (eliminating
the possibility of outcome 4) or if B and A order outcomes 3 and
4 differently, or if they consider them equivalent, then a zero-

sum game may be formulated.

It 1s theoretically possible to solve a game of the type just
described. In practice, however, the solution would be most dif-
ficult to obtain except, perhaps, in the simplest of cases. More-
over, the assignment of numerlcal payoffs 1s clearly arbitrary.
What 1is of prime importance here is the determination of which
outcome will occur; indeed, the dogfight problem is really a com-
plicated "game of kind." This fact, along with other consid-
erations to be discussed below, suggests an alternative approach
to the dogflight problem.
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In a pursulit-evaslion game the roles of the players are fixed
throughout the play of the game: one player 1s a pursuer, the
other an evader. This is not necessarily the case 1n a dogfight.
In fact, one distinguishing feature of the dogfight is that the
players may change roles several times during the course of the
engagement. Consequently, one can think of the dogfight problem
as belng comprised of the following two parts:

a. Given certain informatlion regarding the states of the two
vehlcles, determine the roles to be assumed by each vehicle.
Does A chase B or vice-versa?

b. Given the roles of the two vehicles, determine the associated
optimal strategies or guidance laws.

The second problem is just the pursuit-evasion problem. The
first problem, which we call the "role selection"” problem, 1s the
unigque and crucial aspect of the dogfight problem; we will be
concerned primarily with this problem in the remainder of this
chapter.

Conceptually, the solution to the two interrelated problems
may be visualized as follows. The basic problem 1is characterized
by the termination criteria embodied in (1)-(4) above. In princ-
iple, once the 1nitial state of the problem 1s given, the outcome

is also known, assuming optimal play by both sides. Thus, one

can consider the state space being divided (in principle) into
four distinct regions: L (win for A4), Wg (win for B), Wag
(mutual destruction), and WD (draw). If play starts in wA and A
plays optimally, then the state remains in wA for the duration of
the game (and terminates in wA which 1s, of course, contained in

In the

WA). A simllar statement may be made with respect to wB.
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other two regions, WAB and WD, both players must play optimally

in order for the state to remain in the given region. If one
player does not use his optimal strategy in either of these re-
gilons, the state can move to a reglon that is more favorable to
his opponent. The description here is reminiscent of the situa-
tion in the pursuit-evasion game of kind. In fact, the boundaries
between the various regions (WA"“’WD) constitute "barriers'" in
the usual Isaacs' sense (Ref.3), i.e., they are not crossed in

optimal play.

The method for selecting a player's role 1s now obvious, at
least in reglons WA and WB. If §eWA, A is the pursuer, B the
evader and vice versa 1f xeWp. Moreover, for play in one of these
regions a payoff such as time to capture may be superimposed on
the game so that unique optimal strategies are determined. (This
makes the problem a game of degree in that region.)

The situation in the remalning two regions is not so clear.
In effect, both players are pursuers 1n WAB and both are evaders
in WD. However, the prime goal of each player 1s to avold being
driven into a less favorable region and each one hopes his oppon-
ent will make a mistake he can take advantage of. There does not
appear to be any rationale for superimposing a payoff on either of

these regions.
An Example
To glve a clearer plcture of the ideas Just discussed, we
shall consider a very simple example. Many complicated features

are neglected in order that some direct results can be developed

with only intuitive arguments.
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Problem Formulation--Consider two vehicles, A and B, that
move 1in the horizontal plane. Both vehicles have exactly the

same performance characteristics: the same fixed speed V and the
same minimum allowable turning radius R. Both navigate by select-
ing an appropriate radius of turn at each time instant. For sim-
plicity 1t 1s assumed that the effective firing envelope of each
craft 1Is merely a line segment of length 2. It 4is fixed relative
to the craft and 1s orlented along the direction of the veloclty
vector. Thils situation 1s represented in Flgure 9.

The game 1is such that 1f A ever intersects the line segment

RB, A loses; and if B ever falls upon line segment £ B loses.

’
Therefore, the goal of each player is to force the aﬁtagonist into
his firing envelope while keeping himself out of the firing en-
velope of his opponent. It is assumed that fatality 1is instant

so that the game terminates whenever one aircraft enters the

other's firing envelope.

Only the relative klnematic equations need be considered here.
Point A may be taken as the origln with the velocity vector VA
coincident with the y-axis. Then x and y specify the position of
B relative to A and 6 specifies the relative flying direction of

B with respect to A. (See Figure 9)

Consequently, our game evolves in a three dimensional (rela-
tive) state space with - = < x,y < +  and 0° < 6 < 360°. At
time t, the entire information as to the state of the two aircraft
is specified as a point in this state space. Under the (relative)
combined maneuvers of A and B, this state point x = (x,y,8) evolves
from some given 1nitlal state Xo = (xo,yo,eo) at t=0 to some ter-
minal state Xp = (xf,yf,ef). The terminal state 1s defined as

67



FIG.9

MINIMUM RADIUS OF TURN

)
pe
i

"EFFECTIVE" FIRING RANGE

t
_—
|

ATRCRAFT SPEED

1
<
i

SIMPLIFIED REPRESENTATION OF AIR-TO-AIR
COMBAT OF IDENTICAL VEHICLES. (MOVING
COORDINATE SYSTEM CENTERED AT A.)

68



the state where at least one of the alrcraft is inside the fire
range of the other and the combat game terminates (ignoring, for
now, the condition corresponding to the draw).

To consider the terminal state in this relative space, refer
again to Figure 9. Since point A 1s always fixed, it is clear
that whenever x is such that x = 0, 0 <y < &, aircraft B will be
destroyed. In other words, define

by = {(x,y,6)]x=0, 0 <y < &, for any 6}

Thus , wA consists of all those terminal states favorable to A,
i.e., if Xp€V, then B loses. (See Filg.10)

The structure of those terminal states favorable to craft B,
wB’ is a blt more complicated. Consideration of several specilal
cases 1n Figure 11 will make it clear. When ef = 0, the favorable
states are defined by B being directly behind A at a distance
less than & (Fig. 1Xa)). When 6o = 90°, the states are such that
B is just at A's left side with distance less than £, (Fig.al {(b)).

Similarly, the cases 6 180°, 270° are also clear from Figure

f=
11(c)and (d), respectively.

Returning to Figure 10it is now easy to understand that wB
1s a helical type of surface. This surface is bounded by the
6-axlis and by a helical curve with horizontal generatrix of
length 2.

The union of ¢, and ¥, V¥ Y,, comprises all of the possible
A B A B

terminal states for which at least one of the alircraft 1s knocked
down and the combat game ends. It should be noted from Figure 10
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that there are some states common to both wA and wB, namely the
line segments POR and 0Q which constlitute the intersection set
wAB' On wAB both A and B will be destroyed — by either colllsion
or mutual firing.

Our problem is: given any initial state Xo = (xo,yo,eo) in
the x-y-6 space, what 1ls the outcome of the game when A and B
play optimally wlth respect to theilr individual goals? We discuss
this question below.

Solution Characteristics--In thls section we examine some of
the more interesting characteristics of the solution to the prob-

lem just posed. 1In particular, we illustrate the nature of the
various regions of the state space that correspond to the possible
outcomes of the dogfight. We also present some specific optimal
trajectories. We do not, however, give the complete solution to
the problem.

Let us assume, for the moment, that A and B are engaged in a
duel to the death. Thus, we eliminate, for now, the subspace wD
corresponding to both vehicles escaping. Since wA and wB are sur-
faces, and wAB is reduced to a curve that is the boundary between
wA and wB’ we can argue that WAB’ which connects with wAB’ serves
to separate WA and WB' The state space decomposition might then

look somethlng 1like that shown in Figure 12.

Whenever the 1nitial state is to the left side of WAB’ the
game results will be favorable to A; whenever the 1nitial state
i1s to the right side of wAB’ the game results will be favorable
to B. If 1Initially the state is 1n wAB’ then it should be main-
tained in it, and the outcome would be a mutual destruction, 1.e.,

the trajectory runs somehow within space WAB until it hits wAB'

1



_.,,,égy

\

>

FIG.12 QUALITIVE ILLUSTRATION OF STATE-SPACE DECOMPOSITION

72



Now we return to Figure 10and try to deflne the subspaces WA’
WB and wAB. Inasmuch as the vehlcles have equal capabilities,

one would expect the terminal surfaces wA and wB to be essentially
the same. This not being the case in the given coordinate system,
a coordinate transformation s suggested. Consider Figure 13: we
keep the origin A fixed but rotate th-~ x-y frame with angle €,

where © is half the angle between the vector V, and V,. The new

state 6 ranges from -90° to +90°, and wA and wg in thz new coordi-
nates are as shown in Figure 14. The structure is now two helical
surfaces that are symmetric with respect to both the origin anad
the plane y=0. It is then obvious that the decomposition of the
space should also be symmetric with respect to the origin and the
plane y=0. Since wAB has to pass the line segments PQ,RS,POR,

the plane y=0 has to belong to W,p ({y=0} CLWAB). It follows

that WA_C:{y>O} and Wy < {y<0}. 1Insofar as alrcraft A and air-
craft B have exactly the same performance characteristics, it 1s
natural that they have exactly the same chances to lose or to win.
So the volumes of wA and WB should be equal and thelr shapes
should be symmetric.+

To understand more about W let us consider the trajectories

3
on the plane y=0, or the case tﬁgt aircraft B is always on the
x-axis (see Fig.1539. The two craft are turning symmetrically and
simultaneously until they are opposed to each other then they
approach each other and open fire when the distance is short enough.
The relation between x and 6 1s x = constant + 2Rcos®. The optimal
trajectories are then those shown in Flgure 15b, They will stay on
the plane y=0, and the whole plane y=0 belongs to W No one-

side-win or draw can exist there.

AB*

Ton the other hand, if airecraft A is more capable than B (for ex-
ample, A has greater speed, smaller turning radius, or longer
fire range, etc.), A should have better chance to win. In this
case, WA wlll be larger than wB and wAB wlll be bent away from WA.

3
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Another special case of interest 1s the plane 6=90° (or

=-90°). Here the velocity directions of A and B are opposed to
each other with a difference of 180° (Fig. 16). Then, A and B
can always exterminate each other, if both make an outside turn
(case (a)) and then open fire when they meet. In this case the
whole 6=90° plane would belong to WA?; wD does not exist here.
However, 1f we assume, at this time, that the two players prefer
having a draw to mutual extermination, their optimal trajectories
should be an inside-turn, like that in Figure 16(b). If it is
impossible to do so, they can Just fly straightly and forget each
other. Anyway, they can always avoid total extermination. The
whole plane 6=90°, except the line segment (-¢<x<0,y=0), would
then belong to WD.

much on our assumptioné as to pilot preference.

The decomposition of the space depends very

Thie subspace of a draw, WD, is defined as the union of those
states that do not result in termination on wA, wB or wAB' Each
pilot can not change a trajectory in WD unilaterzlly to his ad-
vantage. So, trajectories starting in wD should always stay in
WD without crossing the boundaries to elther WA’ or WB, or WAB'
Two special types of trajectories in WD may be distingulished:

(1) stationary points, that is points for which the two craft
never change thelr relative position i1n subsequent maneuvering,
(2) closed loops, 1.e., the initial state point moves, but it
follows some cycle periodically (neither of the players can break
the stalemate himself). Other irregular trajectories that are
not stationary points or clcsed loops, but always remain in WD
are also possible. Undoubtedly, the shape of WD will be very
comriicated. To describe 1t completely 1s beyond the

scope of thls report. Here. we are just going to explore some
speclal sections of WD to show its relationship to the other
regions. The main purpose 1s to get a feellng for the ideas

previously presented.
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Consider the situation in which one craft is directly behind
the other but the relative distance between them 1is greater than
the firing range,2. In such a case the lead vehlcle must continue
to dash (l.e., fly a straight course at max-speed) since any turn-
ing maneuver would shorten the distance between the him and his
"pursuer." Since both vehicles have the same capabilities, the
relative positions remain fixed and we have a "stationary" draw.
States for which thls is the case lie on the two half-lines M-y _
and N-y__ shown in Figure 17.* A second kind of "stationary" draw
involves turning maneuvers. In particular, it occurs when both
vehicles are turning in the same circle but their relative posi-
tion remains fixed. For such to be the case their position must
be as shown in Figure 18, i.e., the angle AOB must be equal to
26 and B must be in the y-6 plane. The locus of these points is
given by x=0, y = +2R sin 6, where R 1s the minimum turning radius.
Curves EOF and GOH in Figure 17 correspond to initial states for

this kind of statlonary draw.

To provide an understanding of how the "barriers" arise and
separate the regions, conslder the case shown in Figure 19. The
position of B is to the left and rear of A and the value of 6 1is
negative. Thus, the initial state corresponds to points like U,
J or V in Figure 17 Now B has better tactical position than A
has. The tactic for A 1s to make a full right turn to evade,
whereas that for B 1s to make a full right turn to pursue.++
After followlng some arcs of their respective circles, they fly

straightly along the common tangent line of the two circles (see
Fig. 19).

+Notice that if mutual destruction is preferred to a draw, not

all of these lines will be in WD — part of them will belong to wAB’
++In an actual combat situation A might turn into B inasmuch as he

is not 1likely to be "killed" by an instantaneous traverse of the
firing cone.
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FIG.18 GEOMETRY FOR "STATIONARY" DRAW INVOLVING TURNING MANEUVERS
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FIG.19 GEOMETRY ILLUSTRATING THE FORMATION OF "BARRIERS"
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If originally,B 1is so far away from A that, after turning,
B's fire range 1s still too far back from A, the two vehilcles
Just keep flying, and the final result is a draw. In Figure 17,
this corresponds t¢ the trajectory VW. We understand that VWeWD.
If initially, B is near enough to A so that B can shoot A
down during the turn or after finishing the turn the corresponding
trajectory will look like curve UT in Figure 17. T 1s a point on the
surface wB’ where aircraft A is destroyed. So UTewB.
However, there must be some cases when the initial distance
between A and B is such that, after turning, the front tip of B's

fire range, % is just at the margin or reaching aircraft A,

B,
Any increase of thelr initial distance would make B miss A, while,
any decrease of this distance would guarantee B destroying A.
This marginal case corresponds to the trajectory arc of JN in

Figure 17. Hence, N is just on the rim of wB.

Some of the other marginal optimal trajectories corresponding
to the other initial states are drawn as arcs LM and KN in Figure
17. We can now assert that arcs JN and KN must be on the boundary
surface that divides WD and WB, while arc LM must be on the
boundary that divides WD and WA. Thus, these curves constitute
portions of the appropriate barriers. To i1llustrate, the situa-
tion for the plane 6=0° 1s shown qualitatively in Filgure 20.

Summary
In this chapter we considered the dogfight problem. We saw
that this problem was comprised of two parts: namely, "role-

selection" and pursult-evasion. We developed an approach to the
role-selection problem that involves decomposing the state space
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into reglions that correspond to the (four) possible outcomes of

an aerial duel. This approach appears

to be innovative with re-

spect to the dogfight problem, although it 1s closely related to

Isaacs' analytlc and geometric methods
of kind."

for pursult-evasion "games

A simple dogfight problem was analyzed in some detail in

order to 1illustrate the 1deas involved
ficulties encountered in this analysis
istic dogfight problems 1n thi: manner
However, a comblnation of the concepts

in our approach. The dif-
suggest that solving real-
may well be impractical.

introduced in this chapter

and the computational techniques developed earlier may prove

fruitful.
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6. CONCLUDING REMARKS

In this report we have presented the salient results of a
study to apply differential game theory to aerial combat problems.
In particular, we examined the role of differential game theory
in aerial combat problems (Chapter 2); we developed a new approach
to manned aerial combat games (Chapter 3) and applied it to two
classical differential game problems (Chaptér b); lastly, we sug-
gested an approach to the "dogfight" problem and illustrated the
approach by a simple example (Chapter 5).

The examlnation of the state-of-the art of differentlal game
theory revealed the need for computational approaches to solving
the "games" problems associated with aerial combat. We developed
such an approach by reformulating the problem. The new formula-
tion was arrived at from a consideration of the information upon
which pillots base control decisions and of the nature of the de-
cisions themselves,

As we view it, the aerial combat game is played in a discre-
tized state~space. The discrete states correspond to "blocks" in
the continuous state-space; these blocks reflect the inability of
a pilot to "locate" his opponent precisely. A pillot's control
decision is a choice of one out of a finite set of "canonical con-
trol maneuvers." Thus, knowing that hls opponent is located with-
in a glven block, each pilot must declde which of his availlable
maneuvers would best serve his own goal.

The above assumptions were shown to reduce the aerial combat

game to a discrete Markov game. Computational methods for solving
such games were avallable in the literature. These methods were
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modified using concepts of state increment dynamic programming.

The modifications are appealing from a physical standpolnt, and

they result in a tremendous saving of computation time and high-
speed memory requirements.

The computation scheme was used to solve analogues of two
classic differential game problems, the "Homlclidal Chauffeur
Problem," and the "Two-Car Problem." These applications demon-
strate the baslc validity of the approach and also gave an indica-
tion of 1ts future usefulness.

Our approach to the dogfight problem embodied concepts from
both nonzero-sum games and games of kind. Essentially, the dog-
fight problem was considered as having two parts: namely, the
problem of deciding which player should be a pursuer and which an
evader (role-selection problem), and, the pursult-evasion problem.
We concentrated on the role-selection problem and showed how the
state-space might be decomposed into regions corresponding to the
four possible outcomes of a dogflight. These regions, which are
separated by "barriers," can serve to define the roles of the
players. A simple example was studled to l1lllustrate the ldeas
and difficulties involvéd in this approach to the dogfight problem.

Problem Areas and Suggestions for Further Research

The conceptual-computatlional approach we have taken to aerial
combat problems seems to have great potential. As noted earlier,
stochastic effects are absorbed in the transition probability
matrix and are thus accounted for directly and simply. Convergent
algorithms are avalilable for solving the resulting Markov game
and the solutions are of the feedback type. The physlcally mean-
Ingful aspects of the aerial combat problem are thus directly
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revealed. One need not be concerned with determining the various
singular surfaces that characterize differential game solutions

as described by Isaacs. Nonetheless, our approach is in its in-
fancy and there are problems that need to be resolved. We discuss
some of these below. For discussion purposes, it 1s convenient

to divide the problems into two categories: computational and
analytical (or theoretical). However, one must realize that com-
putational and analytical aspects of the method are closely in-
tertwined.

Computational Problems--The most pressing problem with our

approach 1in 1ts present form concerns the computational load and
storage reguirements assoclated with the method. While the com-
putational demands are not as excessive as those characteristic
of dynamic programming's "curse of dimensionality," they are
nevertheless consliderable. The requirement for obtaining the
transition probabilities pij(u,v), for all i1i,u, and v, imposes
the largest computational burden. While each computatlion is
simple in itself, a realistic problem could necessitate over one
miliion such calculations. A related problem 1s the storage of
the pij's.
reading and writing from other storage devices (tapes, discs, etec.

Rapid access core storage may not be possible and

may be necessary. Thils would increase the effective computation
time.

It should be noted that the pij's can be computed independ-
ently of the optimization algorithm, 1.e., before solving the
optimizatlion problem. Inasmuch as the piJ's are independent of
the payoff, it would be posslble to change payoffs without having
to recompute the transition probabilities., In addition, insofar
as it is possible to account for constraints by '"penalties" in
the payoff, studying the effects of changing these constraints
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would not require recomputing the pij's. On the other hand, if
changes 1in vehlicle characteristics are to be studied and if these
changes can only be accounted for by altering the equations of
motion, then a new set of transition probabilities would have to
be computed for each change. This implles that certain parametric
studles could be quite expensive computationally.

Another computational phase of the approach is the iterative
solution of the discrete Markov game. This aspect of the compu-
tation is less demanding than 1s the calculation of the transition
probabilities but it is, nonetheless, nontrivial. It appears that
approximately one-third of the total computational effort in ob-
talning a sclution will be consumed 1n the iterative procedure.

The above computational requirements raisc questions as to
the feasibllity of solving realistic problems using this approach.
It i1s natural to ask, for example, how large a problem could be
solved at a reasonable cost.+ Answering this qguestion will require
formulating specific problems and estlimating the assoclated com-
putational requirements and costs. This appears to be a most ap-
propriate avenue to pursue. In fact, it seems manifestly desir-
able to apply the technique, as currently formulated, to what might
be fermed a realistic problem. Such an application would provide
answers to a meaningful problem as well as an indication of the
computational feasibility of the approach.

+In making such a determination one must, of course, weight the

value of a particular solution against the cost for obtaining it.
In doing this, it must be kept in mind that a feedback (or a
‘global) solution is obtained using our approach and that such a
solution is of much greater value than an open-loop answer for
one set of 1nitial conditilons.
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Methods for reducing the computational requirements should
also be 1nvestigated. An lmportant area for research is the ex-
amination of technlques for ameliorating the load associated with
computing the piJ's. One obvious technique would be to use a
coarser, nonuniform, state-space discretization. Another 1is to
neglect (or prohibit) transitions across the "edges" or "corners"
of a state "block." Programming techniques, such as word-packing
schemes, that help alleviate storage requirements should also be
investigated. Finally, more rapid algorithms for iterating on
the game solution should be sought. Possibilitles range from
Howard's "iteration in policy space" (Ref.33) to using nonlinear
programming and "over-relaxation" methods.

Analytical Problems-~There are a number of questlions of an

analytical naturec concerning the approach that also present them-
selves. We mention just a few of them here.

One of the more important analytical gquestions concerns the
existence of a saddle-polint solution to the Markov game. Currently,
we are assured of obtaining a min-max (or max-min) solution to the
problem we have posed (l.e., solutions to the so-called majorant
games). We could compare max-min and min-max answers; if they are
equal, we have a saddle-polint. However, this reguires two 1tera-
tive solutions, and a better alternative 1s to seek necessary and
sufficient condlitions for a saddle-point to exlist. 1In this con-
nection we mention that the satisfaction of Eq. (3.13) guarantees
the exlstence of a saddle-point. The condition 1s analogous to
requiring the Hamiltonian to have a saddle-point. Unfortunately,
the condition can only be verifled if analytic expressions for
the pij's are avallable and such 1s not llkely to be the case.

It will be noted that if the pij's and the ciJ's are separable
with respect to u and v, then the satisfaction of Eg. (3.13) is
obvious. In many physical problems one mlght expect this separa-
tion to exist.

89



We consider the Markov game to be the fundamental problem

and not an approximation to a continuous differential game. Never-
theless, 1t would be useful to determine the relatlion of the Markov
game to a corresponding continuous differential game. In particu-
lar, one might like to know under what conditions the solution to
the Markov game approaches that of the corresponding differential
game., To answer this question the limiting behavior of the solu-
tion to the Markov game would have to be investigated as the dis-

cretization becomes finer.

In the two applications of our approach, the problems were
formulated with both players having the same information sets.
The method should be extended to the case where the Information
sets for the two players are different. Thils will be especially
important if the approach is to be used for the "dogfight" problem.
The manner in which this extension 1s to be accomplished is .an
area for study. Specifying the '"canonical maneuvers" for the two
examples was a trivial matter. Determining approprliate canonical
maneuvers for more realistic problems will not be so easy and will

require further study.

Dogfight Problem--As noted earlier, the analytic-geometric
approach to the dogfight problem outlined in Chapter 5 1s not
likely to provide numerical answers for reasonably realistic prob-
lems. This is not surprising in view of the relation of this
approach to the more "classical'" methods of attacking differential
games. However, the approach is useful conceptually and it might
be beneflicial to attempt to employ it in conjuncticn with the com-
putational technique we have developed. The manner 1n which this
could be done is not obvious and 1s an area for study.
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Alternatively, we might attempt a direct formulation of the
dogfight problem as a Markov game. Just how this formulation
should proceed is not immedlately apparent. Nor can we be sure

that the approach is a viable one. These are problems that require
further investigation.
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